1. Golang 中常用的并发模型
- 通过channel通知实现并发控制
- 通过sync包中的WaitGroup实现并发控制
在WaitGroup里主要有三个方法:
- Add, 可以添加或减少 goroutine的数量.
- Done, 相当于Add(-1).
- Wait, 执行后会堵塞主线程,直到WaitGroup 里的值减至0。
func main(){
var wg sync.WaitGroup
var urls = []string{
"http://www.golang.org/",
"http://www.google.com/",
}
for _, url := range urls {
wg.Add(1)
go func(url string) {
defer wg.Done()
http.Get(url)
}(url)
}
wg.Wait()
}
注:在 WaitGroup 第一次使用后,不能被拷贝
应用示例:
func main(){
wg := sync.WaitGroup{}
for i := 0; i < 5; i++ {
wg.Add(1)
go func(wg sync.WaitGroup, i int) {
fmt.Printf("i:%d", i)
wg.Done()
}(wg, i)
}
wg.Wait()
fmt.Println("exit")
}
上面运行会提示所有的 goroutine 都已经睡眠了,出现了死锁。这是因为 wg 给拷贝传递到了 goroutine 中,导致只有 Add 操作,其实 Done操作是在 wg 的副本执行的。因此 Wait 就死锁了。
- 在Go 1.7 以后引进的强大的Context上下文,实现并发控制
通常,在一些简单场景下使用 channel 和 WaitGroup 已经足够了,但是当面临一些复杂多变的网络并发场景下 channel 和 WaitGroup 显得有些力不从心了。 比如一个网络请求 Request,每个 Request 都需要开启一个 goroutine 做一些事情,这些 goroutine 又可能会开启其他的 goroutine,比如数据库和RPC服务。 所以我们需要一种可以跟踪 goroutine 的方案,才可以达到控制他们的目的,这就是Go语言为我们提供的 Context,称之为上下文非常贴切,它就是goroutine 的上下文。
2. nil slice和空slice
var slice []int 是一个nil slice,直接用会越界
slice := []int{} 是一个空slice
3. 进程、线程和协程
- 进程
进程是系统进行资源分配和调度的一个独立单位。每个进程都有自己的独立内存空间,不同进程通过进程间通信来通信。由于进程比较重量,占据独立的内存,所以上下文进程间的切换开销(栈、寄存器、虚拟内存、文件句柄等)比较大,但相对比较稳定安全。
- 线程
线程是进程的一个实体,是CPU调度和分派的基本单位.线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈)。线程间通信主要通过共享内存,上下文切换很快,资源开销较少,但相比进程不够稳定容易丢失数据。
- 协程
协程是一种用户态的轻量级线程,协程的调度完全由用户控制。协程拥有自己的寄存器上下文和栈。协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈,直接操作栈则基本没有内核切换的开销,可以不加锁的访问全局变量,所以上下文的切换非常快。
线程和协程的区别:
- 线程的切换由操作系统负责调度,协程由用户自己进行调度,因此减少了上下文切换,提高了效率。
- 线程的默认Stack大小是1M,而协程更轻量,接近1K。因此可以在相同的内存中开启更多的协程。
- 由于在同一个线程上,因此可以避免竞争关系而使用锁。
- 适用于被阻塞的,且需要大量并发的场景。但不适用于大量计算的多线程,遇到此种情况,更好实用线程去解决。
4. 什么是channel,为什么它可以做到线程安全
Channel是Go中的一个核心类型,可以把它看成一个管道,Channel也可以理解是一个先进先出的队列,通过管道进行通信。
Golang的Channel,发送一个数据到Channel 和 从Channel接收一个数据 都是 原子性的。而且Go的设计思想就是:不要通过共享内存来通信,而是通过通信来共享内存,前者就是传统的加锁,后者就是Channel。也就是说,设计Channel的主要目的就是在多任务间传递数据的,这当然是安全的。
解决数据竞争(Data race),也可以使用管道解决,使用管道的效率要比互斥锁Mutex高。